transfer files
This commit is contained in:
298
ThermalSolver/autoregressive_module.py
Normal file
298
ThermalSolver/autoregressive_module.py
Normal file
@@ -0,0 +1,298 @@
|
||||
import torch
|
||||
from lightning import LightningModule
|
||||
from torch_geometric.data import Batch
|
||||
import importlib
|
||||
from matplotlib import pyplot as plt
|
||||
from matplotlib.tri import Triangulation
|
||||
from .model.finite_difference import FiniteDifferenceStep
|
||||
import os
|
||||
|
||||
def import_class(class_path: str):
|
||||
module_path, class_name = class_path.rsplit(".", 1) # split last dot
|
||||
module = importlib.import_module(module_path) # import the module
|
||||
cls = getattr(module, class_name) # get the class
|
||||
return cls
|
||||
|
||||
|
||||
def _plot_mesh(pos, y, y_pred, y_true ,batch, i, batch_idx):
|
||||
|
||||
idx = batch == 0
|
||||
y = y[idx].detach().cpu()
|
||||
y_pred = y_pred[idx].detach().cpu()
|
||||
pos = pos[idx].detach().cpu()
|
||||
y_true = y_true[idx].detach().cpu()
|
||||
# print(torch.max(y_true), torch.min(y_true))
|
||||
folder = f"{batch_idx:02d}_images"
|
||||
if os.path.exists(folder) is False:
|
||||
os.makedirs(folder)
|
||||
pos = pos.detach().cpu()
|
||||
tria = Triangulation(pos[:, 0], pos[:, 1])
|
||||
plt.figure(figsize=(18, 5))
|
||||
plt.subplot(1, 3, 1)
|
||||
plt.tricontourf(tria, y.squeeze().numpy(), levels=14)
|
||||
plt.colorbar()
|
||||
plt.title("Step t-1")
|
||||
plt.subplot(1, 3, 2)
|
||||
plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=14)
|
||||
plt.colorbar()
|
||||
plt.title("Step t Predicted")
|
||||
plt.subplot(1, 3, 3)
|
||||
plt.tricontourf(tria, y_true.squeeze().numpy(), levels=14)
|
||||
plt.colorbar()
|
||||
plt.title("t True")
|
||||
plt.suptitle("GNO", fontsize=16)
|
||||
name = f"{folder}/graph_iter_{i:04d}.png"
|
||||
plt.savefig(name, dpi=72)
|
||||
plt.close()
|
||||
|
||||
def _plot_losses(losses, batch_idx):
|
||||
folder = f"{batch_idx:02d}_images"
|
||||
plt.figure()
|
||||
plt.plot(losses)
|
||||
plt.yscale("log")
|
||||
plt.xlabel("Iteration")
|
||||
plt.ylabel("Loss")
|
||||
plt.title("Test Loss over Iterations")
|
||||
plt.grid(True)
|
||||
file_name = f"{folder}/test_loss.png"
|
||||
plt.savefig(file_name, dpi=300)
|
||||
plt.close()
|
||||
|
||||
|
||||
class GraphSolver(LightningModule):
|
||||
def __init__(
|
||||
self,
|
||||
model_class_path: str,
|
||||
model_init_args: dict = {},
|
||||
loss: torch.nn.Module = None,
|
||||
start_unrolling_steps: int = 1,
|
||||
increase_every: int = 20,
|
||||
increase_rate: float = 2,
|
||||
max_unrolling_steps: int = 100,
|
||||
max_inference_iters: int = 1000,
|
||||
inner_steps: int = 16,
|
||||
):
|
||||
super().__init__()
|
||||
self.model = import_class(model_class_path)(**model_init_args)
|
||||
# for param in self.model.parameters():
|
||||
# print(f"Param: {param.shape}, Grad: {param.grad}")
|
||||
# print(f"Param: {param[0]}")
|
||||
self.fd_net = FiniteDifferenceStep()
|
||||
self.loss = loss if loss is not None else torch.nn.MSELoss()
|
||||
self.start_unrolling = start_unrolling_steps
|
||||
self.current_unrolling_steps = self.start_unrolling
|
||||
self.increase_every = increase_every
|
||||
self.increase_rate = increase_rate
|
||||
self.max_unrolling_steps = max_unrolling_steps
|
||||
self.max_inference_iters = max_inference_iters
|
||||
self.threshold = 1e-4
|
||||
self.inner_steps = inner_steps
|
||||
|
||||
def _compute_deg(self, edge_index, edge_attr, num_nodes):
|
||||
deg = torch.zeros(num_nodes, device=edge_index.device)
|
||||
deg = deg.scatter_add(0, edge_index[1], edge_attr)
|
||||
return deg + 1e-7
|
||||
|
||||
def _compute_loss(self, x, y):
|
||||
return self.loss(x, y)
|
||||
|
||||
def _log_loss(self, loss, batch, stage: str):
|
||||
self.log(
|
||||
f"{stage}/loss",
|
||||
loss,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
return loss
|
||||
|
||||
@staticmethod
|
||||
def _compute_c_ij(c, edge_index):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
|
||||
|
||||
def _compute_model_steps(
|
||||
self, x, edge_index, edge_attr, boundary_mask, boundary_values
|
||||
):
|
||||
|
||||
out = x + self.model(x, edge_index, edge_attr)
|
||||
# out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||
plt.figure()
|
||||
return out
|
||||
|
||||
def _check_convergence(self, out, x):
|
||||
residual_norm = torch.norm(out - x)
|
||||
if residual_norm < self.threshold * torch.norm(x):
|
||||
return True
|
||||
return False
|
||||
|
||||
def _preprocess_batch(self, batch: Batch):
|
||||
x, y, c, edge_index, edge_attr = (
|
||||
batch.x,
|
||||
batch.y,
|
||||
batch.c,
|
||||
batch.edge_index,
|
||||
batch.edge_attr,
|
||||
)
|
||||
# edge_attr = 1 / edge_attr
|
||||
c_ij = self._compute_c_ij(c, edge_index)
|
||||
edge_attr = edge_attr * (c_ij) # / 100)
|
||||
return x, y, edge_index, edge_attr
|
||||
|
||||
def training_step(self, batch: Batch):
|
||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
losses = []
|
||||
# print(x.shape, y.shape)
|
||||
# # print(torch.max(edge_index), torch.min(edge_index))
|
||||
# plt.figure()
|
||||
# plt.subplot(2,3,1)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=x.squeeze().cpu())
|
||||
# plt.subplot(2,3,2)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,0,:].squeeze().cpu())
|
||||
# plt.subplot(2,3,3)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,1,:].squeeze().cpu())
|
||||
# plt.subplot(2,3,4)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,2,:].squeeze().cpu())
|
||||
# plt.subplot(2,3,5)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,3,:].squeeze().cpu())
|
||||
# plt.subplot(2,3,6)
|
||||
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,4,:].squeeze().cpu())
|
||||
# plt.suptitle("Training Batch Visualization", fontsize=16)
|
||||
# plt.savefig("training_batch_visualization.png", dpi=300)
|
||||
# plt.close()
|
||||
# y = z
|
||||
pos = batch.pos
|
||||
boundary_mask = batch.boundary_mask
|
||||
boundary_values = batch.boundary_values
|
||||
# plt.scatter(pos[boundary_mask,0].cpu(), pos[boundary_mask,1].cpu(), c=boundary_values.cpu(), s=1)
|
||||
# plt.savefig("boundary_nodes.png", dpi=300)
|
||||
# y = z
|
||||
print(y.shape)
|
||||
for i in range(self.current_unrolling_steps * self.inner_steps):
|
||||
out = self._compute_model_steps(
|
||||
# torch.cat([x,pos], dim=-1),
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
# deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
)
|
||||
x = out
|
||||
# print(out.shape, y[:, i, :].shape)
|
||||
losses.append(self.loss(out.flatten(), y[:, i, :].flatten()))
|
||||
|
||||
print(losses)
|
||||
|
||||
loss = torch.stack(losses).mean()
|
||||
# for param in self.model.parameters():
|
||||
# print(f"Param: {param.shape}, Grad: {param.grad}")
|
||||
# print(f"Param: {param[0]}")
|
||||
self._log_loss(loss, batch, "train")
|
||||
return loss
|
||||
|
||||
# def on_train_epoch_start(self):
|
||||
# print(f"Current unrolling steps: {self.current_unrolling_steps}, dataset unrolling steps: {self.trainer.datamodule.train_dataset.unrolling_steps}")
|
||||
# return super().on_train_epoch_start()
|
||||
|
||||
def on_train_epoch_end(self):
|
||||
if (
|
||||
(self.current_epoch + 1) % self.increase_every == 0
|
||||
and self.current_epoch > 0
|
||||
):
|
||||
dm = self.trainer.datamodule
|
||||
self.current_unrolling_steps = min(
|
||||
int(self.current_unrolling_steps * self.increase_rate),
|
||||
self.max_unrolling_steps
|
||||
)
|
||||
dm.unrolling_steps = self.current_unrolling_steps
|
||||
return super().on_train_epoch_end()
|
||||
|
||||
def validation_step(self, batch: Batch, _):
|
||||
# x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
|
||||
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
# for i in range(self.max_inference_iters * self.inner_steps):
|
||||
# out = self._compute_model_steps(
|
||||
# x,
|
||||
# edge_index,
|
||||
# edge_attr,
|
||||
# deg,
|
||||
# batch.boundary_mask,
|
||||
# batch.boundary_values,
|
||||
# )
|
||||
# converged = self._check_convergence(out, x)
|
||||
# x = out
|
||||
# if converged:
|
||||
# break
|
||||
# print(y.shape, out.shape)
|
||||
# loss = self.loss(out, y[:,-1,:])
|
||||
# self._log_loss(loss, batch, "val")
|
||||
# self.log("val/iterations", i + 1, on_step=False, on_epoch=True, prog_bar=True, batch_size=int(batch.num_graphs),)
|
||||
# return loss
|
||||
|
||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
losses = []
|
||||
pos = batch.pos
|
||||
for i in range(self.current_unrolling_steps * self.inner_steps):
|
||||
out = self._compute_model_steps(
|
||||
# torch.cat([x,pos], dim=-1),
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
# deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
)
|
||||
_plot_mesh(batch.pos, x, out, y[:, i, :], batch.batch, i, self.current_epoch)
|
||||
x = out
|
||||
losses.append(self.loss(out, y[:, i, :]))
|
||||
|
||||
loss = torch.stack(losses).mean()
|
||||
self._log_loss(loss, batch, "val")
|
||||
return loss
|
||||
|
||||
def test_step(self, batch: Batch, batch_idx):
|
||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
|
||||
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
losses = []
|
||||
for i in range(self.max_iters):
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr.unsqueeze(-1),
|
||||
deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
)
|
||||
converged = self._check_convergence(out, x)
|
||||
# _plot_mesh(batch.pos, y, out, batch.batch, i, batch_idx)
|
||||
losses.append(self.loss(out, y).item())
|
||||
if converged:
|
||||
break
|
||||
x = out
|
||||
loss = self.loss(out, y)
|
||||
# _plot_losses(losses, batch_idx)
|
||||
self._log_loss(loss, batch, "test")
|
||||
self.log(
|
||||
"test/iterations",
|
||||
i + 1,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-2)
|
||||
return optimizer
|
||||
|
||||
def _impose_bc(self, x: torch.Tensor, data: Batch):
|
||||
x[data.boundary_mask] = data.boundary_values
|
||||
return x
|
||||
219
ThermalSolver/graph_datamodule_unsteady.py
Normal file
219
ThermalSolver/graph_datamodule_unsteady.py
Normal file
@@ -0,0 +1,219 @@
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from lightning import LightningDataModule
|
||||
from datasets import load_dataset
|
||||
from torch_geometric.data import Data
|
||||
from torch_geometric.loader import DataLoader
|
||||
from torch_geometric.utils import to_undirected
|
||||
from .mesh_data import MeshData
|
||||
# from torch.utils.data import Dataset
|
||||
|
||||
class GraphDataModule(LightningDataModule):
|
||||
def __init__(
|
||||
self,
|
||||
hf_repo: str,
|
||||
split_name: str,
|
||||
train_size: float = 0.2,
|
||||
val_size: float = 0.1,
|
||||
test_size: float = 0.1,
|
||||
batch_size: int = 32,
|
||||
remove_boundary_edges: bool = False,
|
||||
build_radial_graph: bool = False,
|
||||
radius: float = None,
|
||||
start_unrolling_steps: int = 1,
|
||||
):
|
||||
super().__init__()
|
||||
self.hf_repo = hf_repo
|
||||
self.split_name = split_name
|
||||
self.dataset_dict = {}
|
||||
self.train_dataset, self.val_dataset, self.test_dataset = None, None, None
|
||||
self.unrolling_steps = start_unrolling_steps
|
||||
self.geometry_dict = {}
|
||||
self.train_size = train_size
|
||||
self.val_size = val_size
|
||||
self.test_size = test_size
|
||||
self.batch_size = batch_size
|
||||
self.remove_boundary_edges = remove_boundary_edges
|
||||
self.build_radial_graph = build_radial_graph
|
||||
self.radius = radius
|
||||
|
||||
def prepare_data(self):
|
||||
dataset = load_dataset(self.hf_repo, name="snapshots")[self.split_name]
|
||||
geometry = load_dataset(self.hf_repo, name="geometry")[self.split_name]
|
||||
|
||||
total_len = len(dataset)
|
||||
train_len = int(self.train_size * total_len)
|
||||
valid_len = int(self.val_size * total_len)
|
||||
self.dataset_dict = {
|
||||
"train": dataset.select(range(0, train_len)),
|
||||
"val": dataset.select(range(train_len, train_len + valid_len)),
|
||||
"test": dataset.select(range(train_len + valid_len, total_len)),
|
||||
}
|
||||
self.geometry_dict = {
|
||||
"train": geometry.select(range(0, train_len)),
|
||||
"val": geometry.select(range(train_len, train_len + valid_len)),
|
||||
"test": geometry.select(range(train_len + valid_len, total_len)),
|
||||
}
|
||||
|
||||
def _compute_boundary_mask(
|
||||
self, bottom_ids, right_ids, top_ids, left_ids, temperature
|
||||
):
|
||||
left_ids = left_ids[~torch.isin(left_ids, bottom_ids)]
|
||||
right_ids = right_ids[~torch.isin(right_ids, bottom_ids)]
|
||||
left_ids = left_ids[~torch.isin(left_ids, top_ids)]
|
||||
right_ids = right_ids[~torch.isin(right_ids, top_ids)]
|
||||
|
||||
bottom_bc = temperature[bottom_ids].median()
|
||||
bottom_bc_mask = torch.ones(len(bottom_ids)) * bottom_bc
|
||||
left_bc = temperature[left_ids].median()
|
||||
left_bc_mask = torch.ones(len(left_ids)) * left_bc
|
||||
right_bc = temperature[right_ids].median()
|
||||
right_bc_mask = torch.ones(len(right_ids)) * right_bc
|
||||
|
||||
boundary_values = torch.cat(
|
||||
[bottom_bc_mask, right_bc_mask, left_bc_mask], dim=0
|
||||
)
|
||||
boundary_mask = torch.cat([bottom_ids, right_ids, left_ids], dim=0)
|
||||
|
||||
return boundary_mask, boundary_values
|
||||
|
||||
def _build_dataset(
|
||||
self,
|
||||
snapshot: dict,
|
||||
geometry: dict,
|
||||
) -> Data:
|
||||
conductivity = torch.tensor(
|
||||
geometry["conductivity"], dtype=torch.float32
|
||||
)
|
||||
temperatures = torch.tensor(snapshot["temperatures"], dtype=torch.float32)[:2]
|
||||
times = torch.tensor(snapshot["times"], dtype=torch.float32)
|
||||
|
||||
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
|
||||
|
||||
bottom_ids = torch.tensor(
|
||||
geometry["bottom_boundary_ids"], dtype=torch.long
|
||||
)
|
||||
top_ids = torch.tensor(geometry["top_boundary_ids"], dtype=torch.long)
|
||||
left_ids = torch.tensor(geometry["left_boundary_ids"], dtype=torch.long)
|
||||
right_ids = torch.tensor(
|
||||
geometry["right_boundary_ids"], dtype=torch.long
|
||||
)
|
||||
|
||||
if self.build_radial_graph:
|
||||
from pina.graph import RadiusGraph
|
||||
|
||||
if self.radius is None:
|
||||
raise ValueError("Radius must be specified for radial graph.")
|
||||
edge_index = RadiusGraph.compute_radius_graph(
|
||||
pos, radius=self.radius
|
||||
)
|
||||
from torch_geometric.utils import remove_self_loops
|
||||
|
||||
edge_index, _ = remove_self_loops(edge_index)
|
||||
else:
|
||||
edge_index = torch.tensor(
|
||||
geometry["edge_index"], dtype=torch.int64
|
||||
).T
|
||||
edge_index = to_undirected(edge_index, num_nodes=pos.size(0))
|
||||
|
||||
boundary_mask, boundary_values = self._compute_boundary_mask(
|
||||
bottom_ids, right_ids, top_ids, left_ids, temperatures[0,:]
|
||||
)
|
||||
|
||||
if self.remove_boundary_edges:
|
||||
boundary_idx = torch.unique(boundary_mask)
|
||||
edge_index_mask = ~torch.isin(edge_index[1], boundary_idx)
|
||||
edge_index = edge_index[:, edge_index_mask]
|
||||
|
||||
edge_attr = torch.norm(pos[edge_index[0]] - pos[edge_index[1]], dim=1)
|
||||
|
||||
n_data = temperatures.size(0) - self.unrolling_steps
|
||||
data = []
|
||||
for i in range(n_data):
|
||||
x = temperatures[i, :].unsqueeze(-1)
|
||||
print(x.shape)
|
||||
y = temperatures[i + 1 : i + 1 + self.unrolling_steps, :].unsqueeze(-1).permute(1,0,2)
|
||||
# print(y.shape)
|
||||
data.append(MeshData(
|
||||
x=x,
|
||||
y=y,
|
||||
c=conductivity.unsqueeze(-1),
|
||||
edge_index=edge_index,
|
||||
pos=pos,
|
||||
edge_attr=edge_attr,
|
||||
boundary_mask=boundary_mask,
|
||||
boundary_values=boundary_values,
|
||||
))
|
||||
return data
|
||||
|
||||
def setup(self, stage: str = None):
|
||||
if stage == "fit" or stage is None:
|
||||
self.train_data = [
|
||||
self._build_dataset(snap, geom)
|
||||
for snap, geom in tqdm(
|
||||
zip(
|
||||
self.dataset_dict["train"], self.geometry_dict["train"]
|
||||
),
|
||||
desc="Building train graphs",
|
||||
total=len(self.dataset_dict["train"]),
|
||||
)
|
||||
]
|
||||
self.val_data = [
|
||||
self._build_dataset(snap, geom)
|
||||
for snap, geom in tqdm(
|
||||
zip(self.dataset_dict["val"], self.geometry_dict["val"]),
|
||||
desc="Building val graphs",
|
||||
total=len(self.dataset_dict["val"]),
|
||||
)
|
||||
]
|
||||
if stage == "test" or stage is None:
|
||||
self.test_data = [
|
||||
self._build_dataset(snap, geom)
|
||||
for snap, geom in tqdm(
|
||||
zip(self.dataset_dict["test"], self.geometry_dict["test"]),
|
||||
desc="Building test graphs",
|
||||
total=len(self.dataset_dict["test"]),
|
||||
)
|
||||
]
|
||||
|
||||
# def create_autoregressive_datasets(self, dataset: str, no_unrolling: bool = False):
|
||||
# if dataset == "train":
|
||||
# return AutoregressiveDataset(self.train_data, self.unrolling_steps, no_unrolling)
|
||||
# if dataset == "val":
|
||||
# return AutoregressiveDataset(self.val_data, self.unrolling_steps, no_unrolling)
|
||||
# if dataset == "test":
|
||||
# return AutoregressiveDataset(self.test_data, self.unrolling_steps, no_unrolling)
|
||||
|
||||
def train_dataloader(self):
|
||||
# ds = self.create_autoregressive_datasets(dataset="train")
|
||||
# self.train_dataset = ds
|
||||
print(type(self.train_data[0]))
|
||||
ds = [i for data in self.train_data for i in data]
|
||||
print(type(ds[0]))
|
||||
return DataLoader(
|
||||
ds,
|
||||
batch_size=self.batch_size,
|
||||
shuffle=True,
|
||||
num_workers=8,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
def val_dataloader(self):
|
||||
ds = [i for data in self.val_data for i in data]
|
||||
return DataLoader(
|
||||
ds,
|
||||
batch_size=self.batch_size,
|
||||
shuffle=False,
|
||||
num_workers=8,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
def test_dataloader(self):
|
||||
ds = self.create_autoregressive_datasets(dataset="test", no_unrolling=True)
|
||||
return DataLoader(
|
||||
ds,
|
||||
batch_size=self.batch_size,
|
||||
shuffle=False,
|
||||
num_workers=8,
|
||||
pin_memory=True,
|
||||
)
|
||||
@@ -5,7 +5,7 @@ import importlib
|
||||
from matplotlib import pyplot as plt
|
||||
from matplotlib.tri import Triangulation
|
||||
from .model.finite_difference import FiniteDifferenceStep
|
||||
|
||||
import os
|
||||
|
||||
def import_class(class_path: str):
|
||||
module_path, class_name = class_path.rsplit(".", 1) # split last dot
|
||||
@@ -14,13 +14,15 @@ def import_class(class_path: str):
|
||||
return cls
|
||||
|
||||
|
||||
def _plot_mesh(pos, y, y_pred, batch, i):
|
||||
def _plot_mesh(pos, y, y_pred, batch, i, batch_idx):
|
||||
|
||||
idx = batch == 0
|
||||
y = y[idx].detach().cpu()
|
||||
y_pred = y_pred[idx].detach().cpu()
|
||||
pos = pos[idx].detach().cpu()
|
||||
|
||||
folder = f"{batch_idx:02d}_images"
|
||||
if os.path.exists(folder) is False:
|
||||
os.makedirs(folder)
|
||||
pos = pos.detach().cpu()
|
||||
tria = Triangulation(pos[:, 0], pos[:, 1])
|
||||
plt.figure(figsize=(18, 5))
|
||||
@@ -37,10 +39,23 @@ def _plot_mesh(pos, y, y_pred, batch, i):
|
||||
plt.colorbar()
|
||||
plt.title("Error")
|
||||
plt.suptitle("GNO", fontsize=16)
|
||||
name = f"images/graph_iter_{i:04d}.png"
|
||||
name = f"{folder}/graph_iter_{i:04d}.png"
|
||||
plt.savefig(name, dpi=72)
|
||||
plt.close()
|
||||
|
||||
def _plot_losses(losses, batch_idx):
|
||||
folder = f"{batch_idx:02d}_images"
|
||||
plt.figure()
|
||||
plt.plot(losses)
|
||||
plt.yscale("log")
|
||||
plt.xlabel("Iteration")
|
||||
plt.ylabel("Loss")
|
||||
plt.title("Test Loss over Iterations")
|
||||
plt.grid(True)
|
||||
file_name = f"{folder}/test_loss.png"
|
||||
plt.savefig(file_name, dpi=300)
|
||||
plt.close()
|
||||
|
||||
|
||||
class GraphSolver(LightningModule):
|
||||
def __init__(
|
||||
@@ -231,7 +246,6 @@ class GraphSolver(LightningModule):
|
||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
|
||||
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
|
||||
for i in range(self.current_iters):
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
@@ -257,36 +271,8 @@ class GraphSolver(LightningModule):
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
|
||||
def test_step(self, batch: Batch, _):
|
||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
|
||||
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
|
||||
for i in range(self.max_iters):
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr.unsqueeze(-1),
|
||||
deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
)
|
||||
converged = self._check_convergence(out, x)
|
||||
# _plot_mesh(batch.pos, y, out, batch.batch, i)
|
||||
if converged:
|
||||
break
|
||||
x = out
|
||||
loss = self.loss(out, y)
|
||||
|
||||
self._log_loss(loss, batch, "test")
|
||||
self.log(
|
||||
"test/iterations",
|
||||
i + 1,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
def test_step(self, batch: Batch, batch_idx):
|
||||
pass
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3)
|
||||
|
||||
@@ -1,119 +1,22 @@
|
||||
# import torch
|
||||
# import torch.nn as nn
|
||||
# from torch_geometric.nn import MessagePassing
|
||||
# from torch.nn.utils import spectral_norm
|
||||
|
||||
# class GCNConvLayer(MessagePassing):
|
||||
# def __init__(self, in_channels, out_channels):
|
||||
# super().__init__(aggr="add")
|
||||
# self.lin_l = spectral_norm(nn.Linear(in_channels, out_channels, bias=False))
|
||||
# self.lin_r = spectral_norm(nn.Linear(in_channels, out_channels, bias=False))
|
||||
|
||||
# def forward(self, x, edge_index, edge_attr, deg):
|
||||
# out = self.propagate(edge_index, x=x, edge_attr=edge_attr, deg=deg)
|
||||
# out = self.lin_l(out)
|
||||
# return out
|
||||
|
||||
# def message(self, x_j, edge_attr):
|
||||
# return x_j * edge_attr
|
||||
|
||||
# def aggregate(self, inputs, index, deg):
|
||||
# """
|
||||
# TODO: add docstring.
|
||||
# """
|
||||
# out = super().aggregate(inputs, index)
|
||||
# deg = deg + 1e-7
|
||||
# return out / deg.view(-1, 1)
|
||||
|
||||
|
||||
# class CorrectionNet(nn.Module):
|
||||
# def __init__(self, hidden_dim=8, n_layers=1):
|
||||
# super().__init__()
|
||||
# # self.enc = GCNConvLayer(1, hidden_dim)
|
||||
# self.enc = nn.Sequential(
|
||||
# spectral_norm(nn.Linear(1, hidden_dim//2)),
|
||||
# nn.GELU(),
|
||||
# spectral_norm(nn.Linear(hidden_dim//2, hidden_dim)),
|
||||
# )
|
||||
# self.layers = torch.nn.ModuleList([GCNConvLayer(hidden_dim, hidden_dim) for _ in range(n_layers)])
|
||||
# self.relu = nn.GELU()
|
||||
|
||||
# self.dec = nn.Sequential(
|
||||
# spectral_norm(nn.Linear(hidden_dim, hidden_dim//2)),
|
||||
# nn.GELU(),
|
||||
# spectral_norm(nn.Linear(hidden_dim//2, 1)),
|
||||
# )
|
||||
|
||||
# def forward(self, x, edge_index, edge_attr, deg,):
|
||||
# # h = self.enc(x, edge_index, edge_attr, deg)
|
||||
# # h = self.relu(self.enc(x))
|
||||
# h = self.enc(x)
|
||||
# for layer in self.layers:
|
||||
# h = layer(h, edge_index, edge_attr, deg)
|
||||
# # h = self.norm(h)
|
||||
# h = self.relu(h)
|
||||
# # out = self.dec(h, edge_index, edge_attr, deg)
|
||||
# out = self.dec(h)
|
||||
# return out
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch_geometric.nn import MessagePassing
|
||||
from torch.nn.utils import spectral_norm
|
||||
from torch_geometric.nn.conv import GCNConv
|
||||
|
||||
|
||||
class CorrectionNet(MessagePassing):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_dim=16):
|
||||
class GCNConvLayer(MessagePassing):
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super().__init__(aggr="add")
|
||||
self.in_net = nn.Sequential(
|
||||
spectral_norm(nn.Linear(1, hidden_dim // 2)),
|
||||
nn.GELU(),
|
||||
spectral_norm(nn.Linear(hidden_dim // 2, hidden_dim)),
|
||||
)
|
||||
|
||||
self.out_net = nn.Sequential(
|
||||
spectral_norm(nn.Linear(hidden_dim, hidden_dim // 2)),
|
||||
nn.GELU(),
|
||||
spectral_norm(nn.Linear(hidden_dim // 2, 1)),
|
||||
)
|
||||
|
||||
self.lin_msg = spectral_norm(
|
||||
nn.Linear(hidden_dim, hidden_dim, bias=False)
|
||||
)
|
||||
self.lin_update = spectral_norm(
|
||||
nn.Linear(hidden_dim, hidden_dim, bias=False)
|
||||
)
|
||||
self.alpha = nn.Parameter(torch.tensor(0.0))
|
||||
self.beta = nn.Parameter(torch.tensor(0.0))
|
||||
self.lin_l = nn.Linear(in_channels, out_channels, bias=True)
|
||||
# self.lin_r = spectral_norm(nn.Linear(in_channels, out_channels, bias=False))
|
||||
|
||||
def forward(self, x, edge_index, edge_attr, deg):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
x = self.in_net(x)
|
||||
out = self.propagate(edge_index, x=x, edge_attr=edge_attr, deg=deg)
|
||||
return self.out_net(out)
|
||||
out = self.lin_l(out)
|
||||
return out
|
||||
|
||||
def message(self, x_j, edge_attr):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
alpha = torch.sigmoid(self.alpha)
|
||||
msg = x_j * edge_attr
|
||||
msg = (1 - alpha) * msg + alpha * self.lin_msg(msg)
|
||||
return msg
|
||||
|
||||
def update(self, aggr_out, x):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
beta = torch.sigmoid(self.beta)
|
||||
return aggr_out * (1 - beta) + self.lin_msg(x) * beta
|
||||
return x_j * edge_attr.view(-1, 1)
|
||||
|
||||
def aggregate(self, inputs, index, deg):
|
||||
"""
|
||||
@@ -122,3 +25,45 @@ class CorrectionNet(MessagePassing):
|
||||
out = super().aggregate(inputs, index)
|
||||
deg = deg + 1e-7
|
||||
return out / deg.view(-1, 1)
|
||||
|
||||
|
||||
class CorrectionNet(nn.Module):
|
||||
def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=8):
|
||||
super().__init__()
|
||||
self.enc = nn.Linear(input_dim, hidden_dim, bias=False)
|
||||
# self.layers = n_layers
|
||||
# self.l = GCNConv(hidden_dim, hidden_dim, aggr="mean")
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[GCNConv(hidden_dim, hidden_dim, aggr="mean", bias=False) for _ in range(n_layers)]
|
||||
)
|
||||
self.dec = nn.Linear(hidden_dim, output_dim)
|
||||
|
||||
def forward(self, x, edge_index, edge_attr,):
|
||||
h = self.enc(x)
|
||||
# h = self.relu(h)
|
||||
for l in self.layers:
|
||||
# print(f"Forward pass layer {_}")
|
||||
h = l(h, edge_index, edge_attr)
|
||||
# h = self.relu(h)
|
||||
out = self.dec(h)
|
||||
return out
|
||||
|
||||
|
||||
class MLPNet(nn.Module):
|
||||
def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=1):
|
||||
super().__init__()
|
||||
layers = []
|
||||
func = torch.nn.ReLU
|
||||
|
||||
self.network = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
func(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
func(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
func(),
|
||||
nn.Linear(hidden_dim, output_dim),
|
||||
)
|
||||
|
||||
def forward(self, x, edge_index=None, edge_attr=None):
|
||||
return self.network(x)
|
||||
@@ -20,7 +20,7 @@ trainer:
|
||||
mode: min
|
||||
patience: 10
|
||||
verbose: false
|
||||
max_epochs: 200
|
||||
max_epochs: 2000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
|
||||
@@ -9,8 +9,8 @@ trainer:
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.TensorBoardLogger
|
||||
init_args:
|
||||
save_dir: lightning_logs
|
||||
name: "01"
|
||||
save_dir: logs
|
||||
name: "test"
|
||||
version: null
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
@@ -33,26 +33,21 @@ trainer:
|
||||
log_every_n_steps: null
|
||||
inference_mode: true
|
||||
default_root_dir: null
|
||||
accumulate_grad_batches: 6
|
||||
# gradient_clip_val: 1.0
|
||||
accumulate_grad_batches: 4
|
||||
gradient_clip_val: 1.0
|
||||
model:
|
||||
class_path: ThermalSolver.module.GraphSolver
|
||||
class_path: ThermalSolver.graph_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.local_gno.GatingGNO
|
||||
model_class_path: ThermalSolver.model.LearnableGraphFiniteDifference
|
||||
model_init_args:
|
||||
x_ch_node: 1
|
||||
f_ch_node: 1
|
||||
hidden: 16
|
||||
layers: 1
|
||||
edge_ch: 3
|
||||
out_ch: 1
|
||||
max_iters: 250
|
||||
unrolling_steps: 64
|
||||
data:
|
||||
class_path: ThermalSolver.data_module.GraphDataModule
|
||||
class_path: ThermalSolver.graph_datamodule.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction"
|
||||
split_name: "2000_ref_1"
|
||||
batch_size: 4
|
||||
split_name: "1000_40x30"
|
||||
batch_size: 8
|
||||
train_size: 0.8
|
||||
test_size: 0.1
|
||||
test_size: 0.1
|
||||
|
||||
@@ -33,11 +33,11 @@ trainer:
|
||||
log_every_n_steps: null
|
||||
inference_mode: true
|
||||
default_root_dir: null
|
||||
accumulate_grad_batches: 6
|
||||
accumulate_grad_batches: 2
|
||||
gradient_clip_val: 1.0
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.module.GraphSolver
|
||||
class_path: ThermalSolver.graph_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.local_gno.GatingGNO
|
||||
model_init_args:
|
||||
@@ -49,11 +49,11 @@ model:
|
||||
out_ch: 1
|
||||
unrolling_steps: 1
|
||||
data:
|
||||
class_path: ThermalSolver.data_module.GraphDataModule
|
||||
class_path: ThermalSolver.graph_datamodule.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction"
|
||||
split_name: "2000"
|
||||
batch_size: 4
|
||||
split_name: "2000_ref_1"
|
||||
batch_size: 10
|
||||
train_size: 0.8
|
||||
test_size: 0.1
|
||||
test_size: 0.1
|
||||
|
||||
70
experiments/config_autoregressive.yaml
Normal file
70
experiments/config_autoregressive.yaml
Normal file
@@ -0,0 +1,70 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.TensorBoardLogger
|
||||
init_args:
|
||||
save_dir: logs.autoregressive
|
||||
name: "test"
|
||||
version: null
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 50
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
accumulate_grad_batches: 1
|
||||
# reload_dataloaders_every_n_epochs: 1
|
||||
default_root_dir: null
|
||||
|
||||
model:
|
||||
class_path: ThermalSolver.autoregressive_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.learnable_finite_difference.CorrectionNet
|
||||
model_init_args:
|
||||
input_dim: 1
|
||||
hidden_dim: 24
|
||||
# output_dim: 1
|
||||
n_layers: 1
|
||||
start_unrolling_steps: 1
|
||||
increase_every: 100000
|
||||
increase_rate: 2
|
||||
max_inference_iters: 300
|
||||
max_unrolling_steps: 40
|
||||
inner_steps: 1
|
||||
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction-unsteady"
|
||||
split_name: "50_samples_easy"
|
||||
batch_size: 64
|
||||
train_size: 0.02
|
||||
val_size: 0.02
|
||||
test_size: 0.96
|
||||
build_radial_graph: true
|
||||
radius: 0.5
|
||||
remove_boundary_edges: true
|
||||
start_unrolling_steps: 1
|
||||
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
# ckpt_path: logs/test/version_0/checkpoints/best-checkpoint.ckpt
|
||||
58
experiments/config_fd.yaml
Normal file
58
experiments/config_fd.yaml
Normal file
@@ -0,0 +1,58 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.TensorBoardLogger
|
||||
init_args:
|
||||
save_dir: logs
|
||||
name: "fd"
|
||||
version: null
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 2
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
inference_mode: true
|
||||
default_root_dir: null
|
||||
accumulate_grad_batches: 4
|
||||
gradient_clip_val: 1.0
|
||||
model:
|
||||
class_path: ThermalSolver.graph_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.GraphFiniteDifference
|
||||
# model_init_args:
|
||||
max_iters: 10000
|
||||
# unrolling_steps: 64
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction"
|
||||
split_name: "1000_1_40x30"
|
||||
batch_size: 8
|
||||
train_size: 0.8
|
||||
test_size: 0.1
|
||||
test_size: 0.1
|
||||
# build_radial_graph: true
|
||||
# radius: 1.5
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
# ckpt_path: lightning_logs/01/version_0/checkpoints/best-checkpoint.ckpt
|
||||
74
experiments/config_gino.yaml
Normal file
74
experiments/config_gino.yaml
Normal file
@@ -0,0 +1,74 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.TensorBoardLogger
|
||||
init_args:
|
||||
save_dir: logs
|
||||
name: "test"
|
||||
version: null
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 15
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
inference_mode: true
|
||||
default_root_dir: null
|
||||
# accumulate_grad_batches: 2
|
||||
# gradient_clip_val: 1.0
|
||||
model:
|
||||
class_path: ThermalSolver.graph_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: neuralop.models import GINO
|
||||
model_init_args:
|
||||
in_channels: 3 # Es: coordinate (x, y, z) + valore della conducibilità k
|
||||
out_channels: 1 # Es: temperatura T
|
||||
|
||||
# Parametri per l'encoder e il decoder GNO
|
||||
gno_coord_features=3, # Dimensionalità delle coordinate per GNO (es. 3D)
|
||||
gno_n_layers=2, # Numero di layer GNO nell'encoder e nel decoder
|
||||
gno_hidden_channels=64, # Canali nascosti per i layer GNO
|
||||
|
||||
# Parametri per il processore FNO
|
||||
fno_n_modes=(16, 16, 16), # Numero di modi di Fourier per ogni dimensione
|
||||
fno_n_layers=4, # Numero di layer FNO
|
||||
fno_hidden_channels=64, # Canali nascosti per i layer FNO
|
||||
|
||||
# Canali per il lifting e la proiezione
|
||||
lifting_channels=256, # Dimensione dello spazio latente dopo il lifting iniziale
|
||||
projection_channels=256, # Dimensione prima della proiezione finale
|
||||
|
||||
# Padding del dominio per il processore FNO
|
||||
domain_padding=0.05
|
||||
# unrolling_steps: 64
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction"
|
||||
split_name: "2000_ref_1"
|
||||
batch_size: 64
|
||||
train_size: 0.8
|
||||
test_size: 0.1
|
||||
test_size: 0.1
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
# ckpt_path: lightning_logs/01/version_0/checkpoints/best-checkpoint.ckpt
|
||||
@@ -44,12 +44,12 @@ model:
|
||||
increase_every: 10
|
||||
increase_rate: 2
|
||||
max_iters: 2000
|
||||
accumulation_iters: 320
|
||||
accumulation_iters: 160
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction"
|
||||
split_name: "1000_40x30"
|
||||
split_name: "1000_1_40x30"
|
||||
batch_size: 32
|
||||
train_size: 0.8
|
||||
test_size: 0.1
|
||||
|
||||
62
experiments/config_gno_inference.yaml
Normal file
62
experiments/config_gno_inference.yaml
Normal file
@@ -0,0 +1,62 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.TensorBoardLogger
|
||||
init_args:
|
||||
save_dir: logs_inference
|
||||
name: "test"
|
||||
version: null
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 25
|
||||
verbose: false
|
||||
max_epochs: 1000
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
# inference_mode: true
|
||||
default_root_dir: null
|
||||
# accumulate_grad_batches: 2
|
||||
# gradient_clip_val: 1.0
|
||||
model:
|
||||
class_path: ThermalSolver.graph_module.GraphSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.finite_difference.FiniteDifferenceStep
|
||||
curriculum_learning: true
|
||||
start_iters: 5
|
||||
increase_every: 10
|
||||
increase_rate: 2
|
||||
max_iters: 2000
|
||||
accumulation_iters: 320
|
||||
data:
|
||||
class_path: ThermalSolver.graph_datamodule.GraphDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction"
|
||||
split_name: "1000_3_40x30"
|
||||
batch_size: 10
|
||||
train_size: 0.8
|
||||
test_size: 0.1
|
||||
test_size: 0.1
|
||||
build_radial_graph: True
|
||||
radius: 1.2
|
||||
remove_boundary_edges: false
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
# ckpt_path: logs/test/version_2/checkpoints/best-checkpoint.ckpt
|
||||
56
experiments/config_pointnet.yaml
Normal file
56
experiments/config_pointnet.yaml
Normal file
@@ -0,0 +1,56 @@
|
||||
# lightning.pytorch==2.5.5
|
||||
seed_everything: 1999
|
||||
trainer:
|
||||
accelerator: gpu
|
||||
strategy: auto
|
||||
devices: 1
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger:
|
||||
- class_path: lightning.pytorch.loggers.TensorBoardLogger
|
||||
init_args:
|
||||
save_dir: lightning_logs
|
||||
name: "pointnet"
|
||||
version: null
|
||||
callbacks:
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
save_top_k: 1
|
||||
filename: best-checkpoint
|
||||
- class_path: lightning.pytorch.callbacks.EarlyStopping
|
||||
init_args:
|
||||
monitor: val/loss
|
||||
mode: min
|
||||
patience: 10
|
||||
verbose: false
|
||||
max_epochs: 200
|
||||
min_epochs: null
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
overfit_batches: 0.0
|
||||
log_every_n_steps: null
|
||||
inference_mode: true
|
||||
default_root_dir: null
|
||||
accumulate_grad_batches: 2
|
||||
gradient_clip_val: 1.0
|
||||
model:
|
||||
class_path: ThermalSolver.point_module.PointSolver
|
||||
init_args:
|
||||
model_class_path: ThermalSolver.model.point_net.PointNet
|
||||
model_init_args:
|
||||
input_dim: 4
|
||||
output_dim: 1
|
||||
data:
|
||||
class_path: ThermalSolver.point_datamodule.PointDataModule
|
||||
init_args:
|
||||
hf_repo: "SISSAmathLab/thermal-conduction"
|
||||
split_name: "2000"
|
||||
batch_size: 10
|
||||
train_size: 0.8
|
||||
test_size: 0.1
|
||||
test_size: 0.1
|
||||
optimizer: null
|
||||
lr_scheduler: null
|
||||
# ckpt_path: lightning_logs/pointnet/version_0/checkpoints/best-checkpoint.ckpt
|
||||
Reference in New Issue
Block a user