Files
FilippoOlivo 54bebf7154 fix model
2025-12-01 14:55:13 +01:00

286 lines
8.9 KiB
Python

import torch
from lightning import LightningModule
from torch_geometric.data import Batch
import importlib
from matplotlib import pyplot as plt
from matplotlib.tri import Triangulation
from .model.finite_difference import FiniteDifferenceStep
import os
def import_class(class_path: str):
module_path, class_name = class_path.rsplit(".", 1) # split last dot
module = importlib.import_module(module_path) # import the module
cls = getattr(module, class_name) # get the class
return cls
def _plot_mesh(pos, y, y_pred, batch, i, batch_idx):
idx = batch == 0
y = y[idx].detach().cpu()
y_pred = y_pred[idx].detach().cpu()
pos = pos[idx].detach().cpu()
folder = f"{batch_idx:02d}_images"
if os.path.exists(folder) is False:
os.makedirs(folder)
pos = pos.detach().cpu()
tria = Triangulation(pos[:, 0], pos[:, 1])
plt.figure(figsize=(18, 5))
plt.subplot(1, 3, 1)
plt.tricontourf(tria, y.squeeze().numpy(), levels=14)
plt.colorbar()
plt.title("True temperature")
plt.subplot(1, 3, 2)
plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=14)
plt.colorbar()
plt.title("Predicted temperature")
plt.subplot(1, 3, 3)
plt.tricontourf(tria, torch.abs(y_pred - y).squeeze().numpy(), levels=14)
plt.colorbar()
plt.title("Error")
plt.suptitle("GNO", fontsize=16)
name = f"{folder}/graph_iter_{i:04d}.png"
plt.savefig(name, dpi=72)
plt.close()
def _plot_losses(losses, batch_idx):
folder = f"{batch_idx:02d}_images"
plt.figure()
plt.plot(losses)
plt.yscale("log")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.title("Test Loss over Iterations")
plt.grid(True)
file_name = f"{folder}/test_loss.png"
plt.savefig(file_name, dpi=300)
plt.close()
class GraphSolver(LightningModule):
def __init__(
self,
model_class_path: str,
model_init_args: dict = {},
loss: torch.nn.Module = None,
curriculum_learning: bool = False,
start_iters: int = 10,
increase_every: int = 100,
increase_rate: float = 1.1,
max_iters: int = 1000,
accumulation_iters: int = None,
):
super().__init__()
self.model = import_class(model_class_path)(**model_init_args)
self.fd_net = FiniteDifferenceStep()
self.loss = loss if loss is not None else torch.nn.MSELoss()
self.curriculum_learning = curriculum_learning
self.start_iters = start_iters
self.increase_every = increase_every
self.increase_rate = increase_rate
self.max_iters = max_iters
self.current_iters = start_iters
self.accumulation_iters = accumulation_iters
self.automatic_optimization = False
self.threshold = 1e-5
self.alpha = torch.nn.Parameter(torch.tensor(0.1))
def _compute_deg(self, edge_index, edge_attr, num_nodes):
deg = torch.zeros(num_nodes, device=edge_index.device)
deg = deg.scatter_add(0, edge_index[1], edge_attr)
return deg + 1e-7
def _compute_loss(self, x, y):
return self.loss(x, y)
def _log_loss(self, loss, batch, stage: str):
self.log(
f"{stage}/loss",
loss,
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
return loss
@staticmethod
def _compute_c_ij(c, edge_index):
"""
TODO: add docstring.
"""
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
def _compute_model_steps(
self, x, edge_index, edge_attr, deg, boundary_mask, boundary_values
):
# with torch.no_grad():
# out = self.fd_net(x, edge_index, edge_attr, deg)
# out[boundary_mask] = boundary_values.unsqueeze(-1)
# diff = out - x
# out = self.model(out, edge_index, edge_attr, deg)
# out = out + self.alpha * correction
# out[boundary_mask] = boundary_values.unsqueeze(-1)
out = self.model(x, edge_index, edge_attr, deg)
out[boundary_mask] = boundary_values.unsqueeze(-1)
return out
def _check_convergence(self, out, x):
residual_norm = torch.norm(out - x)
if residual_norm < self.threshold * torch.norm(x):
return True
return False
def accumulate_gradients(self, losses):
loss_ = torch.stack(losses, dim=0).mean()
self.manual_backward(loss_, retain_graph=True)
return loss_.item()
def _preprocess_batch(self, batch: Batch):
x, y, c, edge_index, edge_attr = (
batch.x,
batch.y,
batch.c,
batch.edge_index,
batch.edge_attr,
)
edge_attr = 1 / edge_attr
c_ij = self._compute_c_ij(c, edge_index)
edge_attr = edge_attr * c_ij
return x, y, edge_index, edge_attr
def training_step(self, batch: Batch, _):
optim = self.optimizers()
optim.zero_grad()
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
losses = []
acc_loss, acc_it = 0, 0
for i in range(self.current_iters):
out = self._compute_model_steps(
x,
edge_index,
edge_attr.unsqueeze(-1),
deg,
batch.boundary_mask,
batch.boundary_values,
)
losses.append(self.loss(out, y))
# Accumulate gradients if reached accumulation iters
if (
self.accumulation_iters is not None
and (i + 1) % self.accumulation_iters == 0
):
loss = self.accumulate_gradients(losses)
losses = []
acc_it += 1
out = out.detach()
acc_loss = acc_loss + loss
# Check for convergence and break if converged (with final accumulation)
converged = self._check_convergence(out, x)
if converged:
if losses:
loss = self.accumulate_gradients(losses)
acc_it += 1
acc_loss = acc_loss + loss
break
# Final accumulation if we are at the last iteration
if i == self.current_iters - 1:
if losses:
loss = self.accumulate_gradients(losses)
acc_it += 1
acc_loss = acc_loss + loss
x = out
loss = self.loss(out, y)
for param in self.model.parameters():
if param.grad is not None:
param.grad /= acc_it
optim.step()
optim.zero_grad()
self.log(
"train/accumulated_loss",
(acc_loss / acc_it if acc_it > 0 else acc_loss),
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
self.log(
"train/iterations",
i + 1,
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
if hasattr(self.model, "p"):
self.log(
"train/p",
self.model.p,
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
def on_train_epoch_end(self):
if self.curriculum_learning:
if (self.current_iters < self.max_iters) and (
self.current_epoch % self.increase_every == 0
):
self.current_iters = min(
int(self.current_iters * self.increase_rate), self.max_iters
)
return super().on_train_epoch_end()
def validation_step(self, batch: Batch, _):
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
for i in range(self.current_iters):
out = self._compute_model_steps(
x,
edge_index,
edge_attr.unsqueeze(-1),
deg,
batch.boundary_mask,
batch.boundary_values,
)
converged = self._check_convergence(out, x)
if converged:
break
x = out
loss = self.loss(out, y)
self._log_loss(loss, batch, "val")
self.log(
"val/iterations",
i + 1,
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
def test_step(self, batch: Batch, batch_idx):
pass
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-3)
return optimizer
def _impose_bc(self, x: torch.Tensor, data: Batch):
x[data.boundary_mask] = data.boundary_values
return x